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We report a self-adapting version of the Wang-Landau algorithm that is ideally suited for application to
systems with a complicated structure of the density of states. Applications include determination of two-
dimensional densities of states and high-precision numerical integration of sharply peaked functions on mul-

tidimensional integration domains.
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I. INTRODUCTION

The application of Monte Carlo methods for the simula-
tion of condensed matter systems is often complicated by
widely disparate time scales [1,2]. For instance, free energy
barriers separating metastable from stable states at first-order
phase transitions can prevent standard Metropolis Monte
Carlo from sampling all important regions of configuration
space. Similar problems arise due to rough energy land-
scapes or critical slowing down near second-order phase
transitions. Several simulation algorithms, including um-
brella sampling [3], multicanonical sampling [4], and parallel
tempering [5], have been developed to alleviate such sam-
pling problems. In these methods, bottlenecks in configura-
tion space are overcome by sampling a modified Boltzmann
weight. A different approach is taken in the recently pro-
posed Wang-Landau method [6,7], in which the density of
states g(E) (essentially the number of states available to the
system at energy E) is calculated in an iterative fashion.
From the density of states one can then calculate the partition
function and, by taking appropriate derivatives, the thermo-
dynamic properties of the system. Wang-Landau sampling
has been successfully applied to a variety of systems ranging
from spin models [6] to fluids [8], polymers [9,10], and pro-
teins [11]. Furthermore, the method has been generalized for
the calculation of free energy profiles along selected reaction
coordinates [12].

The Wang-Landau approach is based on the observation
that if configurations (states) x with total energy H(x) are
sampled with a probability proportional to 1/g(H(x)) the
resulting energy histogram is flat. The density of states g(E),
however, is usually unknown. Indeed, it is the goal of the
Wang-Landau method to calculate this function. This is
achieved in the following way. First, the density of states is
initialized with a guess, say, g(E)=1. A random walk through
configuration space is then carried out by randomly changing
configurations and accepting or rejecting them according to
the weight 1/g(H(x)) using the Metropolis rule [1]. Each
time a certain energy E is visited the corresponding density
of states is multiplied with a factor f>1, such that it be-
comes less likely to visit states with the same energy again.
Due to this iterative adjustment of the sampling weight all
energies in a given range are then generated roughly with the
same probability. If the factor f is slowly decreased, the en-
ergy distribution will eventually become flat and the function
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g(E) will converge towards the density of states.

One of the most appealing features of the Wang-Landau
algorithm is that even for determining sharply peaked densi-
ties of states, virtually no knowledge of the behavior of the
function is required. Instead of facing the problem of having
to determine a bias function that closely resembles the de-
sired density of state, one starts with a flat trial density,
which automatically adapts and shapes itself with higher and
higher accuracy during each Wang-Landau step. The Wang-
Landau algorithm can thus be regarded as a non-Markovian
iterative self-adjusting relative of umbrella sampling.

However, successful application of the Wang-Landau
method does require one vital piece of information: In order
to produce a flat histogram, we not only need to specify the
sampling range in energy space, but to also make sure that
for all energies in this range accessible configurations exist.
Indeed, if the system is prevented from visiting certain en-
ergy values within the specified range, the corresponding en-
ergy histogram will fail to become flat and the algorithm
does not converge.

At first thought, this may regarded as a trivial matter. One
might, for instance, fix the problem of inaccessible energies
by dividing the entire energy range into several overlapping
windows and by separately carrying out a Wang-Landau
simulation in each of these windows. Possible inaccessible
energies are most likely to occur at the upper and lower
limits of the energy range. Windows in which such energies
exist are then simply discarded and the density of states is
calculated only from the windows where the Wang-Landau
calculation converges. In some cases, however, such an ap-
proach is not adequate. Problems can become particularly
severe if densities are calculated as a function of more than
one variable. In the next section, we will discuss how these
difficulties arise in the calculation of the density of states
g(E,M) as a function of energy E and magnetization M for
the two-dimensional (2d) Ising model. In Sec. III we will
then present an algorithm for determining the energy range
adaptively. We discuss two applications of this algorithm in
Sec. V and draw some conclusions in Sec. VI.

II. ISING MODEL

As an example, consider the 2d nearest neighbor Ising
model with Hamiltonian
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H(s,H)=2N~- 2, s;s;— HX, s, (1)
Cij) i

with spins s=(s, ...,sy) on N=L? sites on a square lattice in
an external field H, and with periodic boundary conditions.
The normalization constant 2N is chosen only for conve-
nience. Here each spin s; is a discrete variable and can take
only one of two values: +1 (up) and —1 (down). The notation
(ij) in the first sum on the right-hand side of Eq. (1) indicates
that this sum runs over all pairs s; and s; of spins that are
nearest neighbors on the lattice. The second sum on the
right-hand side of Eq. (1) describes the interaction of the
spins with a homogeneous external field H.

It is convenient to rewrite the Hamiltonian (1) in terms of
the following numbers. For each given spin configuration s,
let N, denote the number of up spins, and N_ the number of
down spins. In addition, we introduce N, as the number of
nearest neighbor pairs, where both spins are up, N__ as the
number of nearest neighbor pairs where both spins are down,
and N,_ as the number of unequal nearest neighbor spin
pairs. With these definitions, the Ising Hamiltonian H(s)
="H(s,0) for vanishing field can be rewritten as

Ho(s)=2N-N,, - N_+N,_. (2)

However, since the total number of nearest neighbor pairs on
a 2d square lattice with N sites and periodic boundary con-
ditions is 2N, the identity

N.,,+N_+N,_=2N (3)
holds, and we can simplify Eq. (2) to obtain
Ho(S) =2N,_. (4)

Counting nearest neighbor pairs on the lattice in which at
least one spin is up, one finds the relation [13] 4N,=2N,,
+N,_, and by symmetry also 4N_=2N__+N,_, such that fi-
nally

Ho(s) =—4N,, +8N,=—4N__+8N_. (5)

It follows from this equation that for even N the possible
energy values at vanishing field are

E=0,4,8, ... 4N —4,4N. (6)

The corresponding density of states g(E), i.e., the number of
configurations with energy E, can be calculated with the
Wang-Landau algorithm with high precision [6].

The problem of how to generalize the Wang-Landau ap-
proach to determine the combined density of states g(E, M)
for the energy E and the total magnetization

M=, 5,=N,—~N_=2N,-N (7)

1

is considerably more complicated. Let &(x) denotes the Kro-
necker delta &, for an integer argument x; i.e., 8x)=1 if x
=0 and 8(x)=0 if x# 0. Using this discrete version of Dirac’s
delta function, the canonical partition function at magnetic
field H and temperature 7 can be written as
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Z(B.H) = 2, e PEIMg(E M), (8)

M.E

where
SEM =D AE- DM -2 s) O

counts the number g of states with energy £ and magnetiza-
tion M and 1/B=kgT is the Boltzmann constant. Since ac-
cording to Eq. (8) the partition function can be calculated
from g(E,M), all thermal and magnetic properties of the
system are determined by this density of states.

In the following, it will be more convenient to work with
the equivalent expression g(E,N,) [the quantities N, and M
are simply related by Eq. (7)]. The corresponding set of al-
lowed parameter values (E,N,) is a subset of 4N, X N, and
its exact shape must be determined before the Wang-Landau
algorithm can be implemented. To determine this region we
have to determine the maximum and minimum energy for
each given N,.

From Eq. (5) one can calculate the maximum energy
E . (N,) for any given value 0<N,<N. For N, <N/2 there
is always at least one configuration for which N,,=0, which
leaves us with E,, (N, <N/2)=8N,. From symmetry, it fol-
lows that also E,,(N,>N/2)=8(N-N,), while for N,,
=N/2 the fully “antiferromagnetic” state is the state of high-
est energy with E,,,(N/2)=4N. On the other hand, the mini-
mum energy E,;,(N,) is identical with the zero-temperature
ground state of the system with an imposed value of N, and
is therefore expected to decrease monotonically from a maxi-
mum value at N,=N/2 to 0 at the perfectly ordered states
corresponding to N,=0 and N,=N. At N,=N/2, the system’s
energy is minimized by configurations displaying perfect
phase separation of up and down spins separated by a single,
perfectly straight domain wall. This results in the pure sur-
face energy contribution 44N. As the linear interface moves
through the system at constant energy for values of N,
around N/2, in this region we also expect the function
E.in(N,) to be flat, with steps resulting from a geometric
“lock in” at certain values commensurate with the underlying
lattice structure. The detailed ground state energies found in
these configurations will be discussed in more detail below.
In any case, it is not straightforward to calculate E,;,(N,) for
general N,. In principle, we could try to determine E;,(N,)
for every single value N, using a variety of methods; for
instance, with straightforward Monte Carlo minimization. In
practice, this is both computationally expensive and some-
times of insufficient accuracy. For decreasing values of N,
<N/2 in a certain intermediate range, it becomes energeti-
cally more favorable for the system to switch from linear
domain wall configurations to circular clusters, as they have
a lower surface energy. However, to perform the transition
from configurations with a planar to those with a circular
interface along paths of constant N,, the system would have
to cross a large energy barrier. Such transitions are quite
unlikely and certainly diminish speed and accuracy of the
calculation. Obviously, a more sophisticated approach to de-
termine the energy minima is needed.
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However, even after determining the boundary of the al-
lowed region in (E,N,) space, we may be left with the pos-
sibility of the existence of holes, i.e., (E,N,) values that are
not realized, in the interior of this region. Hence, at these
particular values, the density of states g(E,N,) vanishes. For
instance, consider a “lock in” configuration as mentioned
above. By this we mean a phase separated configuration con-
sisting of two domains of up and down spins, which are
separated by two (due to the periodic boundary conditions)
perfectly linear domain walls. Obviously this is only possible
if N, =nyN is an n integer multiple of VN. For a fixed given
value n around VN/2, this configuration will have the small-
est “surface” N,_ of unequal spin pairs of all other configu-
rations Wlth the same magnetization. According to Eq. (4) its
energy 4\N will thus be lower than that of any other con-
figuration with the same total number of up spins, such that it
constitutes a state of lowest energy for N, —n\N Flipping
N spins now produces a value N, =nVN+m, which is

“incommensurate” with the underlying lattice. Among such
“neighboring” configurations, those with a piecewise linear
interface with exactly two “steps,” will have the smallest
“surface.” As the corners of the steps produce two more un-
even spin pairs, the corresponding energy of 4/N+4 resides
at +4 above the lowest energy found for the “commensurate”
linear interface. On the other hand, to calculate the first “ex-
cited” energy, i.e., the first energy level above 4N at the
commensurate value N, —n\N we are only allowed to ex-
change spins among each other. However, starting from a
linear interface, it is easy to see that any exchange of unequal
spins produces an energy located not +4 but even +8 above
the lowest energy 4N, leaving a “hole” at 4|N+4. By a
similar reasoning, it is easy to see that since the global en-
ergy maximum E,, (N/2) corresponding to the “antiferro-
magnetic” state where all nearest neighbor spin pairs are un-
equal and the magnetization is zero, the first possible lower
energy level at magnetization zero is even separated from the
top level by a gap of —12. Are there even more holes? This
question is crucial. If just one of these holes remains unde-
tected, the Wang-Landau histograms will never become flat
and the algorithm fails to converge. For pure nearest neigh-
bor Ising models the answer may be found analytically, but
for more general couplings the task may be highly nontrivial.

In the case of continuous models the above problem of
possible holes in the spectrum seems to be rather exotic.
However, for discrete systems it is expected to be the rule
rather than the exception. Summarizing our analysis so far, a
modified Wang-Landau algorithm that takes care of both the
boundary and possible holes of a multidimensional param-
eter region for the density of states would be highly useful.
This can be achieved in a way explained below.

III. ALGORITHM

In the following, we will discuss the calculation of the
density of states g(E, M) as a function of energy E and mag-
netization M for a spin system, but we stress that the method
we propose is very general and can easily be applied to a
wide variety of systems. To overcome the problems outlined
above, we have developed an algorithm in which the ranges
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of £ and M are determined adaptively and on the fly. In order
to set up multidimensional histograms, we first have to ob-
tain upper and lower bounds on E and M. Determining a
range of magnetizations usually poses no serious problem,
but even the crude determination of useful upper and lower
bounds on E(M) for given magnetization M may be a non-
trivial question. In the above example, these were fixed by
analyzing the system configurations. In the case of continu-
ous models these ranges may also be chosen deliberately
from estimating the maximum energy or magnetization rel-
evant up to a certain temperature 7 to which the result will
be applied. In addition, an approach of dividing the param-
eter space into several smaller regions (“windows”), whose
densities of states are then matched, may be chosen for effi-
ciency. In any case, we confine the parameters to a rectangu-
lar region with the lower and upper bounds of energy and

magnetization denoted by (E,M) and (E,M), respectively.
Next, we have to choose histogram widths for both E and
M. Of course, to get accurate results, one would like to pick
the finest resolution possible. For discrete systems, this offers
another pitfall, since choosing a grid sizes too small in the
direction of a discrete parameter will result in failure of the
algorithm. Apart from such trivial considerations, the choice
of grid widths has a major influence on the performance of
the algorithm, as a multidimensional histogram grows rap-
idly with decreasing grid widths and may even force us to
resort to an umbrella approach as mentioned above. Let ng

and n,, denote the numbers of histogram bins of width (E

—E)/ng and (M —-M)/n,,, respectively. We also denote the
central values of bin (i,) by (E;,M;). On this grid in the E
-M space, two-dimensional arrays for the density of states,
g(E,M), and for the frequency of E-M pairs, h(E,M), are set
up.

The idea underlying our modified Wang-Landau algo-
rithm is to successively record the absolute minimum and
maximum values E;,(M;) and E,,(M;) for each magneti-
zation index M; in each step of the random walk. Suppose
we now initialize our Wang-Landau random walk by choos-
ing a random spin configuration with energy in the bin cen-
tered at £, and a magnetization in the bin centered at M,.
These values then serve as initial values E, (M)
=FE in(M;)=E;. Whenever during the simulation a new mag-
netization occurs, this initialization procedure is carried out
for that particular magnetization. The energy bounds

Eux(M;) and E,;,(M;) are updated every time an energy E
outside the current energy range belonging to M; is found
For all energy values between the “old” and the “new” en-
ergy bounds, the corresponding histogram and density of
states entries h(i,j) and g(i,j) are initialized with 0 and 1,
respectively. By iterating this procedure, the domain of the
Wang-Landau simulation quickly spreads out in parameter
space. Of course, flatness of the histogram should not be
checked before a large number of, say, 10° random moves
has been performed to avoid an untimely stop of this first
“domain sampling run.” In the course of the simulation, the
histogram A(i, j), should finally satisfy a certain flatness cri-
terion except for points outside the bounds or certain isolated
areas (“holes”) inside this region, where the histogram en-
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tries are strictly zero. As a second requirement, we now insist
that each histogram bin be visited at least a minimum of, say,
10° times. Accordingly, it is clear how to identify the bound-
ary and holes of the parameter domain: We will call a “hole”
a bin (i,/) inside the parameter region found so far that has
strictly zero histogram entries, while the remaining histo-
gram is flat and remains so for a chosen large additional
number of random moves. The same argument is also used to
identify all other “forbidden” parameter regions outside of
the domain of visited parameters found so far. Once the holes
and the bins outside of the determined domain of parameters
are determined, the standard Wang-Landau algorithm is car-
ried out by simply ignoring these bins in checking for flat-
ness of the histogram, which amounts to approximating
g(E,M) by g(E,M)=0 for the corresponding (E,M) values.
In the succeeding Wang-Landau runs, the parameter region
found in this domain sampling run is frozen.

Of course, by choosing, e.g., poor moves, it is always
possible that a Monte Carlo type of simulation fails to cover
an important part of phase space. Therefore, we emphasize
that efficiently designed Monte Carlo moves are absolutely
indispensable for the above method to work. In principle,
however, due to the increasing precision of the result ac-
quired in each successive run, one can never exclude the
possibility of discovering, e.g., “new” allowed pairs (E, M)
in a later stage of the simulation. Nevertheless, by choosing
rather strict parameters (flatness criterion, a large number of
minimum hits for each bin, long constancy of flatness) for
the initial run of the simulation, this possibility can be
greatly reduced.

Still—how do we deal with such possible subsequent ex-
tensions of the valid parameter range? Obviously, the answer
depends on the intended use of the result. For instance, sup-
pose that we are interested in studying the low-temperature
behavior of a certain system, and that a new lowest energy is
found for a certain magnetization M at a later Wang-Landau
run. Of course, it is always possible to complete the current
Wang-Landau step, update the parameter range, and then re-
start the simulation. However, let us, for instance, suppose
that we are interested in the calculation of the free energy of
a system near its phase transition temperature. In studying
this problem, one can expect that the dominant contributions
to the free energy will result from higher energy ranges, and
one can safely ignore these marginal points. In addition, to
speed up the calculation in continuous systems in which
holes are not expected to appear, it may be admissible to
exclude, e.g., the very boundary bins of the determined pa-
rameter region from the flatness check. These points may
correspond to parameter cells of which only a small volume
fraction is actually accessible to the system, thus slowing
down the algorithm without significantly increasing the ac-
curacy of the result. Finally, when in doubt, it is always
possible to further reduce the (E, M) region in order to esti-
mate the error introduced by excluding boundary points.

IV. WANG-LANDAU INTEGRATION

The self-adapting Wang-Landau algorithm outlined above
can also be applied to the problem of integrating strongly
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peaked functions in d X[ dimensions. Such integrals typi-
cally arise in perturbation theory; e.g., in the context of lat-
tice models in statistical mechanics [14] or lattice quantum
field theory [15]. For instance, consider an Euclidean ¢*
model defined on a d-dimensional cubic lattice of lattice con-
stant 1. Perturbation theory to loop order [ involves
ld-dimensional convolution integrals of a propagator of type
G(k,m)~1/(4=L, sin® k;/2+m?), where m?>>0 and |k
<. A typical integral will be of the form

I(m?) = dddpJ ddqu(p,m)G(q,m)G(p +q,m),
[- 7] [- 7]
(10)

which corresponds to the well-known /=2 “setting sun”
Feynman diagram. More complicated integrals in higher di-
mensions occur for increasing orders of perturbation theory.
Depending on the dimension d and the diagram under inves-
tigation, one has to deal with infrared singularities for m?
—0. For small values of m?, the integrals are strongly
peaked around the center as well as along certain diagonal
directions of R%. In this situation, numerical evaluation for
smaller and smaller m> becomes increasingly difficult. To
successfully apply Monte Carlo integration, we would have
to construct a suitable umbrella function that resembles the
integrand, within certain limits, which is normalized, or
equivalently, whose integral on the domain of integration is
known. Unfortunately, except for trivial cases, such a func-
tion is usually prohibitively difficult to find. As a matter of
fact, the integrand itself would be the perfect umbrella func-
tion. However, normalizing it is just equivalent to actually
computing the original integral. A slight variation of this idea
would be the following. For values of m? exceeding a certain
“large” value m(z) the integrals are no longer sharply peaked
and are therefore are accessible to standard numerical inte-
gration. We then use this normalized integrand, which we
will denote by g(x,m), x € R¥, as an umbrella function for
computing our integral for a nearby parameter m% and so
forth. However, in the resulting iterative procedure, care
must be taken to control the unavoidable successive integra-
tion errors.

We now show how to compute integrals of the above type
using the self-adaptive Wang-Landau algorithm sketched
above. Let f(x)>0 denote a continuous and positive func-
tion on any compact subset V C R, such that the minimum
Smin=min, . f(x) and maximum f, ;=max, v f(x) are fi-
nite. We would like to compute the integral

s f d’xf(x). (11)
.

Let

¢(x) = —In f(x) = f(x) = e~ (12)

denote the corresponding “energy” at temperature kg7=1.
We also set @;:=—1n fiin, @o:=—In fr and AE:=@ —¢@p. Af-
ter a trivial manipulation, we obtain
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[

An= | dzete ), (13)

—0

where

gAE) = f d*x8(E - ¢(x)) (14)
!

denotes the corresponding density of states. Dividing the en-
ergy interval [ ¢y, ¢;] into N subintervals of length e:=AE/N
and approximating the delta function by J&E-¢(x))
=(1/€)x{E-¢(x)), where

L,
Xf(e) = 0.

denotes the “characteristic function” of energy e+ e/2 gives

le| < €2

le| = /2

(15)

1
g(E) = - J dxx(E - ¢(x)). (16)

Defining the N energy values

E,==¢y+(n+1/2)e, n=0,....N-1, (17)
we arrive at
N-1
71~ 620 g E,). (18)

For arbitrary n, let V, denote the subset of all x € V with
energy |¢(x)—E,| <€/2. Then

N-1
Zf]= V2 et E,). (19)
n=0
where
Ve
We(En) = (V) (20)

is the volume fraction of all points x of V with energies
within €/2 around E,. Since trivially

100

80 -

60 -

E/4

40 -

20 -

0-3 ;
0 20 40 60 80 100
N,

FIG. 1. (N,,E)-domain of parameters for the 2d Ising model on
a 10X 10 lattice.
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FIG. 2. Ing(N,,E) as computed for the 2d Ising model on a
36 X 36 lattice.

N-1 N-1
Ewe(En)=<1)E V';=Y= , (21)

n=0

the numbers w(E,) define a normalized distribution in en-
ergy space. However, this means that the w(E,) must be
identical to

__8AB) (22)
Engf(En)

which can be determined from the Wang-Landau method by
random walks in the volume V. Note that the final formula

WE(En) = gf'(Eiz) :

N-1

Af]= VY et E,) (23)

n=0

actually computes the integral; i.e., not just the integral up to
a constant factor. This is because, although we were unable
to normalize an umbrella function in direct space, due to the
boundedness of f it is possible to normalize the density of
states g/(E) in energy space. To carry out the integration
procedure sketched above requires just two pieces of infor-
mation. First we have to determine the volume V of the in-
tegration domain; i.e., the integral Z [1]. As a second ingre-
dient, we would have to determine the energy bounds ¢, ¢;.
In the case of a complicated function on some complicated
domain, even the determination of exact minima and maxima
may be a difficult task. However, using our self-adaptive
algorithm, all that is required is to find crude but safe esti-
mates of these bounds, which is usually a trivial matter. Al-
though the integrand may strongly peak in direct space with
a peak height growing, e.g., like m=2" for m— 0, the corre-

In(T)
p—————
/1

~ln(m2)
0

5 10 15

FIG. 3. Results for integral (10) completed by analytic approxi-
mations in the asymptotic small and large m? regions.
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In[I(e™™*)]

8 1

7.5 .
+
7 +
+
65|
i . 1010 MC Steps

2 4 6 8

FIG. 4. Convergence of the numerical integration procedure for
integral (10) at —In(m?)=14.0 as a function of Monte Carlo steps.

sponding range in energy space only grows like 2n Inm.
Therefore, the above method is ideally suited to tackle inte-
grals of the type discussed.

V. NUMERICAL RESULTS
A. Ising model

As the first illustrative example of our algorithm, we cal-
culate the density of states g(E,M) of the 2d Ising model.
The density of states calculated with the Wang-Landau
method for the equivalent lattice gas model has been used by
Jain and de Pablo to determine the surface free energy of the
vapor-liquid interface [9]. Figure 1 shows the (E,N,) param-
eter region obtained from our algorithm on a 10X 10 Ising
lattice. Notice the location of holes and the traces of the
underlying lattice structure. The corresponding density of
states g(E,N,) for a 36 X 36 lattice is shown in Fig. 2.

B. Numerical Integration

To illustrate the power of our numerical integration algo-
rithm, we present the results of a calculation of integral (10)
in the parameter range 0.4<-In(m?)<14.0. The resulting
data were completed by conventional Monte Carlo integra-
tion data and analytic approximations of the integral in the
asymptotic regions —In(m?)>14 and —In(m?)<0. We per-
formed up to 22 successive Wang-Landau runs, using 15 000
bins in energy space and a flatness parameter of 0.7. The
results are shown in Fig. 3. The computational effort is larg-
est for small parameter values; i.e., —In(m?) near 14.0. For
these values, although convergence sets in a lot faster, we
used a total of approximately 10!' Monte Carlo moves of
maximum width 1.0 in direct space. Figure 4 displays the
numerical convergence of the integral as a function of Monte
Carlo steps for this “worst case” scenario. The corresponding
density of states is shown in Fig. 5. One notices nearly sin-
gular behavior at the lower and upper energy boundaries.
These singularities, which are, of course, due to the “flat-
ness” of the integrand in direct space, effectively put a limit
to the use of the method at extreme parameter values as it is.
However, useful results could still be obtained by sampling
different “umbrella” regions near these boundaries in addi-
tional runs.

Let us return to Fig. 5. By close investigation, using the
present flatness parameter of 0.7, the resulting density of
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~In[g(E)]
70

60
50
40
30
0

10 \}

E
—-40 =30 =20 -10

FIG. 5. Density of states g/{E) for integral (10) calculated at
—In(m?)=14.0.

states does not yield strong noise disturbance down to scales
even much smaller than depicted here. However, we should
like to mention that, as long as one is not interested in cal-
culating the density of states but just the integral, the perfor-
mance of our algorithm can be significantly increased by
reducing the flatness parameter to smaller values. In fact, this
may finally lead to noticeable noise in the density of states.
However, the calculated value of the integral is not very
sensitive to this noise, as the final formula (23) effectively
performs a smoothening average.

VI. CONCLUSIONS

In the context of statistical mechanics, the self-adjusting
Wang-Landau method presented above is ideally suited for
computing one, or even multidimensional densities of states
for systems whose energetic or configurational bounds are
not known in advance. In fact, it can also be employed to
calculate such bounds, such as e.g., energy minima or
maxima as functions of an order parameter value, with high
accuracy or detect forbidden areas in the space of admissible
parameter values. The algorithm should thus be useful, for
instance, for finding spin-glass ground states [16].

The self-adapting character of the algorithm also turns the
Wang-Landau method into a powerful numerical integration
tool. In passing, we note that such a numerical integration
could also serve as a benchmark to study the efficiency of the
Wang-Landau algorithm. First of all, the performance of the
algorithm is certainly a function of tuning parameters such as
histogram width and flatness percentage. In Ref. [6] the al-
gorithm was applied to a 2d Ising model, where the results
can be compared to analytical solutions. Quite recently, an
analysis of the efficiency of the Landau-Wang method has
been presented for Lennard-Jones and Dzugutov fluids [17],
focusing on the optimal choice of energy windows in a par-
allel implementation. Compared to these examples, the com-
parison of the performance of the numerical Wang-Landau
integration algorithm with different parameters, applied to a
case wherein the value of the integral is actually known ana-
Iytically, is easy.
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